o

A
5 b‘“

!

el
Lk D
e

510 C++: The Complete Reference

++ supports two complete 1/O systems: the one inherited from C and the object-

oriented I/0O system defined by C++ (hereafter called simply the C++ 1/O system).

The C-based I/O system was discussed in Part One. Here we will begin to examire
the C++ I/O system. Like C-based I/0, C++'s I/O system is fully integrated. The different
aspects of C++'s I/O system, such as console I/O and disk I/0, are actually just
different perspectives on the same mechanism. This chapter discusses the foundations
of the C++ I/0 system. Although the examples in this chapter use "console” 1/0, the
information is applicable to other devices, including disk files (discussed in Chapter
21).

Since the I/O system inherited from C is extremely rich, flexible, and powerful, you
might be wondering why C++ defines yet another system. The answer is that C's I/O
system knows nothing about objects. Therefore, for C++ to provide complete support
for object-oriented programming, it was necessary to create an I/O system that could
operate on user-defined objects. In addition to support for objects, there are several
benefits to using C++'s /O system even in programs that don't make extensive (or
any) use of user-defined objects. Frankly, for all new code, you should use the C++1/0
system. The C 1/O is supported by C++ only for compatibility.

This chapter explains how to format data, how to overload the << and >> [/O
operators so they can be used with classes that you create, and how to create special
1/0 functions called manipulators that can make your programs more efficient.

__l old vs. Modern C++ i/0

There are currently two versions of the C++ object-oriented 1/0O library in use: the older
one that is based upon the original specifications for C++ and the newer one defined
by Standard C++. The old 1/O library is supported by the header file <iostream.h>.
The new I/0 library is supported by the header <iostream>. For the most part the two
libraries appear the same to the programmer. This is because the new I/0O library is, in
essence, simply an updated and improved version of the old one. In fact, the vast majority
of differences between the two occur beneath the surface, in the way that the libraries
are implemented—not in how they are used.

From the programmer's perspective, there are two main differences between the
old and new C++I/0 libraries. First, the new I/0 library contains a few additional
features and defines some new data types. Thus, the new I/O library is essentially
a superset of the old one. Nearly all programs originally written for the old library
will compile without substantive changes when the new library is used. Second, the
old-style I/O library was in the global namespace. The new-style library is in the std
namespace. (Recall that the std namespace is used by all of the Standard C++ libraries.)
Since the old-style I/O library is now obsolete, this book describes only the new I/0
library, but most of the information is applicable to the old 1/0O library as well.

Chapter 20: The C++ 1/0 System Basics 511

| C++ Streams

Like the C-based 1/0O system, the C++ 1/O system operates through streams. Streams
were discussed in detail in Chapter 9; that discussion will not be repeated here. Howeves,
to summarize: A stream is a logical device that either produces or consumes information.
A stream is linked to a physical device by the [/O system. All streams behave in the
same way even though the actual physical devices they are connected to may differ
substantially. Because all streams behave the same, the same I/O functions can operate
on virtually any type of physical device. For example, you can use the same function
that writes to a file to write to the printer or to the screen. The advantage to this approach
is that you need learn only one 1/O system.

__| The C++ Stream Classes

As mentioned, Standard C++ provides support for its I/O system in <iostream>. In
this header, a rather complicated set of class hierarchies is defined that supports I/O
operations. The 1/O classes begin with a system of template classes. As explained in
Chapter 18, a template class defines the form of a class without fully specifying the
data upon which it will operate. Once a template class has been defined, specific
instances of it can be created. As it relates to the I/O library, Standard C++ creates
two specializations of the I/O template classes: one for 8-bit characters and another
for wide characters. This book will use only the 8-bit character classes since they are
by far the most common. But the same techniques apply to both.

The C++ /0 system is built upon two related but different template class hierarchies.
The first is derived from the low-level I/O class called basic_streambuf. This class
supplies the basic, low-level input and output operations, and provides the underlying
support for the entire C++ 1/0O system. Unless you are doing advanced 1/0
programming, you will not need to use basic_streambuf directly. The class hierarchy
that you will most commonly be working with is derived from basic_ios. This is a
high-level 1/O class that provides formatting, error checking, and status information
related to stream 1/O. (A base class for basic_ios is called ios_base, which defines
several nontemplate traits used by basic_ios.) basic_ios is used as a base for several
derived classes, including basic_istream, basic_ostream, and basic_iostream. These
classes are used to create streams capable of input, output, and input/output,
respectively.

As explained, the I/0O library creates two specializations of the template class
hierarchies just described: one for 8-bit characters and one for wide characters. Here
is a list of the mapping of template class names to their character and wide-character
versions.

- C++4: The Complete Reference

Character- Wide-Character-
Template Class based Class based Class
basic_streambuf streambuf wstreambuf
basic_ios ios wios
basic_istream istream wistream
basic_ostream ostream wostream
basic_iostream iostream wiostream
basic_fstream fstream wistream
basic_ifstream ifstream wifstream
basic_ofstream ofstream wofstream

The character-based names will be used throughout the remainder of this book,
since they are the names that you will normally use in your programs. They are also
the same names that were used by the old I/O library. This is why the old and the new
I/0 library are compatible at the source code level.

One last point: The ios class contains many member functions and variables that
control or monitor the fundamental operation of a stream. It will be referred to frequently.
Just remember that if you include <iostream> in your program, you will have access to
this important class.

C++'s Predefined Streams

When a C++ program begins execution, four built-in streams are automatically opened.

They are:
Stream Meaning Default Device
cin Standard input Keyboard
cout Standard output Screen
cerr Standard error output Screen
clog Buffered version of cerr Screen

Streams cin, cout, and cerr correspond to C's stdin, stdout, and stderr.

By default, the standard streams are used to communicate with the console.
However, in environments that support I/O redirection (such as DOS, Unix, OS/2,
and Windows), the standard streams can be redirected to other devices or files. For
the sake of simplicity, the examples in this chapter assume that no I/O redirection
has occurred.

Chapter 20: The C++ 1/0 System Basics

Standard C++ also defines these four additional streams: win, wout, werr, and
wlog. These are wide-character versions of the standard streams. Wide characters are
of type wchar_t and are generally 16-bit quantities. Wide characters are used to hold
the large character sets associated with some human languages.

___| Formatted 1/0

The C++ I/0 system allows you to format [/O operations. For example, you can set
a field width, specify a number base, or determine how many digits after the decimal
point will be displayed. There are two related but conceptually different ways that you
can format data. First, you can directly access members of the ios class. Specifically,
you can set various format status flags defined inside the ios class or call various ios
member functions. Second, you can use special functions called manipulators that can
be included as part of an 1/0O expression.

We will begin the discussion of formatted I/O by using the ios member functions
and flags.

Formatting Using the ios Members

Each stream has associated with it a set of format flags that control the way information
is formatted. The ios class declares a bitmask enumeration called fmtflags in which the
following values are defined. (Technically, these values are defined within ios_base,
which, as explained earlier, is a base class for ios.)

adjusttield basefield boolalpha dec
fixed floatfield hex internal
left oct right scientific
showbase showpoint showpos skipws
unitbuf uppercase

These values are used to set or clear the format flags. If you are using an older compiler,
it may not define the fmtflags enumeration type. In this case, the format flags will be
encoded into a long integer.

When the skipws flag is set, leading white-space characters (spaces, tabs, and
newlines) are discarded when performing input on a stream. When skipws is cleared,
white-space characters are not discarded.

When the left flag is set, output is left justified. When right is set, ~utput is right
justified. When the internal flag is set, a numeric value is padded to fill a field by inserting
spaces between any sign or base character. If none of these flags are set, output is right
justified by default.

514

C++: The Complete Reference

By default, numeric values are output in decimal. However, it is possible to change
the number base. Setting the oct flag causes output to be displayed in octal. Setting the
hex flag causes output to be displayed in hexadecimal. To return output to decimal, set
the dec flag.

Setting showbase causes the base of numeric values to be shown. For example, if
the conversion base is hexadecimal, the value 1F will be displayed as 0x1F.

By default, when scientific notation is displayed, the e is in lowercase. Also, when
a hexadecimal value is displayed, the x is in lowercase. When uppercase is set, these
characters are displayed in uppercase.

Setting showpos causes a leading plus sign to be displayed before positive values.

Setting showpoint causes a decimal point and trailing zeros to be displayed for all
floating-point output—whether needed or not.

By setting the scientific flag, floating-point numeric values are displayed using
scientific notation. When fixed is set, floating-point values are displayed using normal
notation. When neither flag is set, the compiler chooses an appropriate method.

When unitbuf is set, the buffer is flushed after each insertion operation.

When boolalpha is set, Booleans can be input or output using the keywords true
and false.

Since it is common to refer to the oct, dec, and hex fields, they can be collectively
referred to as basefield. Similarly, the left, right, and internal fields can be referred to
as adjustfield. Finally, the scientific and fixed fields can be referenced as floatfield.

Setting the Format Flags

To set a flag, use the setf() function. This function is a member of ios. Its most common
form is shown here:

fmtflags setf(fmtflags flags);

This function returns the previous settings of the format flags and turns on those flags
specified by flags. For example, to turn on the showpos flag, you can use this statement:

E stream.setf (ios: :showpos) ;

Here, stream is the stream you wish to affect. Notice the use of ios:: to qualify showpos.
Since showpos is an enumerated constant defined by the ios class, it must be qualified
by ios when it is used.

The following program displays the value 100 with the showpos and showpoint
flags turned on.

Chapter 20: The C++ 1/0 System Basics

#include <iostream>
using namespace std;

int main{)

{
cout.setf (ios::showpoint) ;
cout.setf (ios::showpos);

cout << 100.0; // displays +1C0.000

return 0;

It is important to understand that setf() is a member function of the ios class and
affects streams created by that class. Therefore, any call to setf() is done relative to a
specific stream. There is no concept of calling setf() by itself. Put differently, there is
no concept in C++ of global format status. Each stream maintains its own format status
information individually.

Although there is nothing technically wrong with the preceding program, there
is a more efficient way to write it. Instead of making multiple calls to setf(), you can
simply OR together the values of the flags you want set. For example, this single call
accomplishes the same thing;:

// You can OR together two or more flags,
cout.setf (ios::showpoint | ios::showpos);

R b Because the format flags are defined within the ios class, you must access their values by
emember S 40 , : : !
using ios and the scope resolution operator. For example, showbase by itself will not be

recognized. You must specify ios:showbase.

Clearing Format Flags

The complement of setf() is unsetf(). This member function of ios is used to clear one
or more format flags. Its general form is

void unsetf(fmtflags flags);

The flags specified by flags are cleared. (All other flags are unaffected.)
The following program illustrates unsetf(). It first sets both the uppercase and
scientific flags. It then outputs 100.12 in scientific notation. In this case, the "E" used

515

516

C++: The Complete Reference

in the scientific notation is in uppercase. Next, it clears the uppercase flag and again
outputs 100.12 in scientific notation, using a lowercase "e.”

#include <iostream>

N

using namespace std;

int main()

return 0;

An Overloaded Form of setf()

{
cout.setf (ios::uppercase |
cout << 100.12; // displays 1.(01Z
cout.unsetf (ios: ::uppercase); // cle
cout << " \n" << 100.12; // displays

ar uppercase

2.002200e+02

There is an overloaded form of setf() that takes this general form:

fmtflags setf(fmtflags flags1, fmtflags flags2);

In this version, only the flags specified by flags2 are affected. They are first cleared and

then set according to the flags specified by flagsT.

Note that even if flags1 contains other

flags, only those specified by flags2 will be affected. The previous flags setting is returned.

For example,

#include <iostream>
using nemespace std;

int main()
{
cout.setf (ios:

:showpoint | ios:

cout << 100.06; // displays 100.000,

return 0;

:showpos,

i0s::showpoint) ;

not +100.000

Chapter 20: The C++ /0 System Basics

Here, showpoint is set, but not showpos, since it is not specified in the second
parameter.

Perhaps the most common use of the two-parameter form of setf() is when setting
the number base, justification, and format flags. As explained, references to the oct,
dec, and hex fields can collectively be referred to as basefield. Similarly, the left, right,
and internal fields can be referred to as adjustfield. Finally, the scientific and fixed
fields can be referenced as floatfield. Since the flags that comprise these groupings are
mutually exclusive, you may need to turn off one flag when setting another. For example,
the following program sets output to hexadecimal. To output in hexadecimal, some
implementations require that the other number base flags be turned off in addition to
turning on the hex flag. This is most easily accomplished using the two-parameter form
of setf().

#include <iostream>

using namespace std;
int main()
{
cout.setf(lios::hex, 1os::basefield);

cout << 100; // this displavs 54

return 0;

Here, the basefield flags (i.,e., dec, oct, and hex) are first cleared and then the hex flag
is set.

Remember, only the flags specified in flags2 can be affected by flags specified by
flags1. For example, in this program, the first attempt to set the showpos flag fails.

// This program will not work.
#include <iostream>
using namespace std;

int main()

cout.setf (ios::showpos, ios::hex); // error, showpos not set

?M‘ cout << 100 << '\n'; // displays 100, not +1(0

cout.setf (ios::showpos, ios::showpos); // this is correct

517

518 C++: The Complete Reference

cout << 100; // now displays +1C0

return 0;

Keep in mind that most of the time you will want to use unsetf() to clear flags and
the single parameter version of setf() (described earlier) to set flags. The setf(fmtflags,
fmtflags) version of setf() is most often used in specialized situations, such as setting
the number base. Another good use may involve a situation in which you are using
a flag template that specifies the state of all format flags but wish to alter only one or
two. In this case, you could specify the template in flags1 and use flags2 to specify which
of those flags will be affected.

Examining the Formatting Flags

There will be times when you only want to know the current format settings but not
alter any. To accomplish this goal, ios includes the member function flags(), which
simply returns the current setting of each format flag. Its prototype is shown here:

fmtflags flags();

The following program uses flags() to display the setting of the format flags relative
to cout. Pay special attention to the showflags() function. You might find it useful in
programs you write.

#include <iostream>
using namespace std;

void showflags() ;

int main()

{
// show default condition of format flags
showtlags () ;
cout.setf(ios::right | ios::showpoint | ios::fixed);

showflags();

return 0;

Chapter 20: The C++ 1/0 System Basics 519

// This function displays the status of the format flags.
void showflags()
{

los::fmtflags £;

long 1i;

f = (long) cout.flags(); // get flag settings
// check each flag
for{i=0x4000; 1; 1 =1 >> 1)

if(1 & f) cout << "1 ";

else cout << "0 ";

cout << " \n";

Sample output from the program is shown here. (The precise output will vary from
compiler to compiler.)

Setting All Flags

The flags() function has a second form that allows you to set all format flags associated
with a stream. The prototype for this version of flags() is shown here:

fmtflags flags(fmtflags f);

When you use this version, the bit pattern found in fis used to set the format flags
associated with the stream. Thus, all format flags are affected. The function returns
the previous settings.

The next program illustrates this version of flags(). It first constructs a flag mask
that turns on showpos, showbase, oct, and right. All other flags are off. It then uses
flags() to set the format flags associated with cout to these settings. The function
showflags() verifies that the flags are set as indicated. (It is the same function used
in the previous program.)

#include <iostream>
using namespace std;

520 C++: The Complete Reference

void showflags();

int main{)
{
// show default conditior of format flags

showflags () ;

// showpos, showbase, oct, right are on, others off
ios::fmtflags f = ics::showpos | ios::showbase | ios::oct | ios::right;
cout.flags(f); /' get all flags

showflags () ;

return 0;

Using width(), precision(), and fill()

In addition to the formatting flags, there are three member functions defined by ios
that set these format parameters: the field width, the precision, and the fill character.
The functions that do these things are width(), precision(), and fill(), respectively.
Each is examined in turn.

By default, when a value is output, it occupies only as much space as the number
of characters it takes to display it. However, you can specify a minimum field width
by using the width() function. Its prototype is shown here:

streamsize width(streamsize w);

Here, w becomes the field width, and the previous field width is returned. In some
implementations, the field width must be set before each output. If it isn't, the default
field width is used. The streamsize type is defined as some form of integer by the
compiler.

After you set a minimum field width, when a value uses less than the specified
width, the field will be padded with the current fill character (space, by default) to
reach the field width. If the size of the value exceeds the minimum field width, the
field will be overrun. No values are truncated.

When outputting floating-point values, you can determine the number of dji gits
of precision by using the precision() function. Its prototype is shown here:

streamsize precision(streamsize p);

Chapter 20: The C++ 1/0 System Basics 521

Here, the precision is set to p, and the old value is returned. The default precision is 6.
In some implementations, the precision must be set before each floating-point output.
If it is not, then the default precision will be used.

By default, when a field needs to be filled, it is filled with spaces. You can specify
the fill character by using the fill() function. Its prototype is

char fill(char ch);

After a call to fill(), ch becomes the new fill character, and the old one is returned.
Here is a program that illustrates these functions:

#include <iostream>

using namespace std;
int maint()
{
cout .precision(4) ;
cout .width(10) ;
cout << 193.12345 << "\n"; // displays 10.12

cout . fill('*");

cout .width(10);
cout << 10.12345 << "\n"; // displays *****10.12

// field width applies to strings, too
cout .width(10);

cout << "Hi!" << "\n"; // displays *******Hil
cout.width(10);
cout.setf (ios::left); // left justify

cout << 10.12345; // displays 10.12*%***

return 0;

This program's output is shown here:

10.12
*****10,12

***‘k*k*Hi|

10.12%%%x*

522 C++: The Complete Reference

There are overloaded forms of width(), precision(), and fill() that obtain but do
not change the current setting. These forms are shown here:

char fill();
streamsize width();
streamsize precision();

Using Manipuiators to Format 1/0

The second way you can alter the format parameters of a stream is through the use

of special functions called manipulators that can be included in an I/O expression. The
standard manipulators are shown in Table 20-1. As you can see by examining the table,
many of the I/O manipulators parallel member functions of the ios class. Many of the
manipulators were added recently to C++ and will not be supported by older compilers.

Manipulator Purpose Input/Output
boolalpha Turns on boolapha flag. Input/Output
dec Turns on dec flag. Input/Output
endl Output a newline character ~ Output
and flush the stream.
ends Output a null. Output
fixed Turns on fixed flag. Output
flush Flush a stream. Output
hex Turns on hex flag. Input/Output
internal Turns on internal flag. Output
left Turns on left flag. Output
nobooalpha Turns off boolalpha flag. Input/Output
noshowbase Turns off showbase flag. Output
noshowpoint Turns off showpoint flag. Output
noshowpos Turns off showpos tlag. Qutput
Table 20-1. The C++ Manipulators

Chapter 20:

The C++ 1/0 System Basics

Manipulator Purpose Input/Output
noskipws Turns off skipws tlag,. Input
nounitbuf Turns off unitbuf flag. Output
nouppercase Turns off uppercase flag. Output
oct Turns on oct tlag. Input/Output
resetiosflags (fmtflags) Turn off the flags Input/Qutput
specified in f.
right Turns on right flag. Output
scientific Turns on scientific flag. Output
setbase(int base) Set the number base Input/Output
to base.
setfill{(int ¢/ Set the fill character to ch. Qutput
setiosflags(fmtflags f) Turn on the flags Input/output
specified in f.
setprecision (int p) Set the number of digits Output
of precision.
setw(int w) Set the field width to w. Output
showbase Turns on showbase flag. Qutput
showpoint Turns on showpoint flag. Qutput
showpos Turns on showpos flag. Output
skipws Turns on skipws tlag. fnput
unitbuf Turns on unitbuf flag. Output
uppercase Turns on uppercase flag. Qutput
ws Skip leading white space. Input
Table 20-1. The C++ Manipulators (continued)

To access manipulators that take parameters (such as setw()), you must include
<iomanip> in your program.

524 C++: The Complete Reference

Here is an example that uses some manipulators:

#include <iostream:>
#include <iomanip>
using namespace std;

int main()
{
cout << hex << 100 << endl;

cout << setfill('?') << setw(1l0) << 2343.0;

return 0;

This displays

64

Notice how the manipulators occur within a larger I/O expression. Also notice that
when a manipulator does not take an argument, such as endl() in the example, it is not
followed by parentheses. This is because it is the address of the function that is passed
to the overloaded << operator.

As a comparison, here is a functionally equivalent version of the preceding program
that uses ios member functions to achieve the same results:

#include <iostream>
#include <iomanip>
using namespace std;

int main()

cout.setf(ios::hex, ios::basefield);
cout << 100 << "\n"; // 100 in hex

cout.fill('?2');
cout.width(10) ;
cout << 2343.0;

return 0;

Chapter 20:. The C++ 1/0 System Basics 525

As the examples suggest, the main advantage of using manipulators instead of
the ios member functions is that they often allow more compact code to be written.

You can use the setiosflags() manipulator to directly set the various format flags
related to a stream. For example, this program uses setiosflags() to set the showbase
and showpos flags:

#include <iostream>
#include <iomanip>

using namespace std;

int main()

{
cout << setiosflags(ios::showpos);
cout << setiosflags(ios::showbase);
cout << 123 << " " << hex << 1Z3;

return 0;

The manipulator setiosflags() performs the same function as the member function
setf().

One of the more interesting manipulators is boolapha. It allows true and false
values to be input and output using the words "true” and "false” rather than numbers.
For example,

#include <iostream>

using namespace std;

int main()
{
bool b;

b = true;
cout << b << " " << boolalpha << b << endl;

cout << "Enter a Boolean value: ";
cin >> boolalpha >> b;

cout << "Here is what you entered: " << b;

return 0;

526

C++: The Complete Reference

Here is a sample run.

1 true
Enter a Boolean value: false
Here is what you entered: false

Overloading << and >>

As you know, the << and the >> operators are overloaded in C++ to perform [/O
operations on C++'s built-in types. You can also overload these operators so that
they perform 1/0O operations on types that you create.

In the language of C++, the << output operator is referred to as the inserfion operator
because it inserts characters into a stream. Likewise, the >> input operator is called
the extraction operator because it extracts characters from a stream. The functions that
overload the insertion and extraction operators are generally called inserters and extractors,
respectively.

Creating Your Own Inserters

[t is quite simple to create an inserter for a class that you create. All inserter functions
have this general form:

ostream &operator<<(ostream &strean, class_type obj)
{

// body of inserter

return strean;

I

Notice that the function returns a reference to a stream of type ostream. (Remember,
ostream is a class derived from ios that supports output.) Further, the first parameter
to the function is a reference to the output stream. The second parameter is the object
being inserted. (The second parameter may also be a reference to the object being inserted.)
The last thing the inserter must do before exiting is return stream. This allows the inserter
to be used ina larger [/O expression.

Within an inserter function, you may put any type of procedures or operations that
vou want. That is, precisely what an inserter does is completely up to you. However,
for the inserter to be in keeping with good programming practices, you should limit
its operations to outputting information to a stream. For example, having an inserter
compute pi to 30 decimal places as a side effect to an insertion operation is probably
not a very good idea!

To demonstrate a custom inserter, one will be created for objects of type
phonebook, shown here.

class phonebook {
public:

Chapter 20: The C++ 1/0 System Basics

char name{80];

int areacode;

int prefix;

int num;

phonebook (char *n, int a, int p, int nm)
{

U

This class holds a person’s name and telephone number. Here is one way to create
an inserter function for objects of type phonebook.

!/ Display name and phone number
ostream &operator<<{ostream &s“ream, phonebook o)
{

stream << o.name << " ";

stream << "{" << o.areacode << ") ";

stream << o.prefix << "-" << o.num << "\n";

return stream; // nmust return stream

Here is a short program that illustrates the phonebook inserter function:

#include <iostream>
#include <cstring>

using namespace std;

class phonebook {
public:
char name(8C];
int areacode;
int prefix;
int num;
phonebook (char *n, int a, int p, int nm)
{
strcpy iname, n);
areacode = a;
prefix = p;
num = Inm;

528

C++: The Complete Reference

Y

// Display name and phone number.
ostream &operator<<(ostream &stream, phonebook o)
{

stream << o.name << " ";

stream << " (" << o.areacode << ") ";

stream << o.prefix << "-" << o.num << "\n";

return stream; /,/ must return stream

int main()

{
phonebook a("Ted", 111, 555, 1234):
phonebook b("Alice", 312, 555, 5768) ;
phonebook c("Tom", 212, 555, 9991) ;

cout << a << b << ¢;

return 0;

The program produces this output:

Ted (111) 555-1234
Alice (312) 555-57683
Tom (212) 555-9991

In the preceding program, notice that the phonebook inserter is not a member of
phonebook. Although this may seem weird at first, the reason is easy to understand.
When an operator function of any type is a member of a class, the left operand (passed
implicitly through this) is the object that generates the call to the operator function.
Further, this object is an object of the class for which the operator function is a member.
There is no way to change this. If an overloaded operator function is a member of a
class, the left operand must be an object of that class. However, when you overload
inserters, the left operand is a stream and the right operand is an object of the class.
Therefore, overloaded inserters cannot be members of the class for which they are
overloaded. The variables name, areacode, prefix, and num are public in the preceding
program so that they can be accessed by the inserter.

Chapter 20: The C++ 1/0 System Basics

The fact that inserters cannot be members of the class for which they are defined
seems to be a serious flaw in C++. Since overloaded inserters are not members, how
can they access the private elements of a class? In the foregoing program, all members
were made public. However, encapsulation is an essential component of object-oriented
programming. Requiring that all data that will be output be public conflicts with this
principle. Fortunately, there is a solution to this dilemma: Make the inserter a friend of
the class. This preserves the requirement that the first argument to the overloaded inserter
be a stream and still grants the function access to the private members of the class for
which it is overloaded. Here is the same program modified to make the inserter into
a friend function:

#include <iostream>
#include <cstring>
using namespace std;

class phonebook {
// now private
char name([80];
int areacode;
int prefix;
int num;
public:
phonebook (char *n, int a, int p, int nm)
{
strepy (name, n);
areacode = a;
prefix = p;
num = nm;
}

friend ostream &operator<<(ostream &stream, phonebook o) ;

Y

// Display name and phone number.
ostream &operator<<{ostream &stream, phonebook o)
{

stream << o.name << " ";

stream << " (" << o.areacode << ") ";

stream << o.prefix << "-" << o.num << "\n";

return stream; // must return stream

529

530 C++: The Complete Reference

int main{)

phonebook a{"Ted”,

phonebook b(*Alice

phoneoook ¢ ("Tom",

cout << a << bh << ¢;

return G;

When you define the body of an inserter function, remember to keep it as general as
possible. For example, the inserter shown in the preceding example can be used with
any stream because the body of the function directs its output to stream, which is the
stream that invoked the inserter. While it would not be technically wrong to have written

stream << o.name << " ";

this would have the effect of hard-coding cout as the output stream. The original
version will work with any stream, including those linked to disk files. Although in
some situations, especially where special output devices are involved, vou may want to
hard-code the output stream, in most cases you will not. In general, the more flexible
your inserters are, the more valuable they are.

Noi The inserter for the phonebook class works fine uniess the value of nun is something
like 0034, in which case the preceding zeroes will not be displayed. To fix this, you can
etther make s into a string or vou can sct the fill character to zero and use the width()

format function to generate the leading zeroes. The solution is left to the reader as
an exercise.

Before moving on to extractors, let's look at one more example of an inserter
function. An inserter need not be limited to handling only text. An inserter can be used
to output data in any form that makes setise. For example, an inserter for some class
that is part of a CAD system may output plotter instructions. Another inserter might
generate graphics images. An inserter for a Windows-based program could display
a dialog box. To sample the flavor of outputting things other than text, examine the
following program, which draws boxes on the screen. (Because C++ does not define

Chapter 20: The C++ 1/0 System Basics

a graphics library, the program uses characters to draw a box, but feel free to substitute
graphics if your system supports them.)

#include <lostream>

using namespace std;

class box {

Q

T

n

X, ¥

[%H

public:
box(int i, int j) { x=i; y=3; 1}
friend ostream &operator<<(ostream &stream, box 0);

I

// Cutput a box.
ostream &operator<< (ostream &stream, box o}
{

register int 1, J;

for{i=0; i<o.x; 1i++)
stream << "*";

st.ream << "\n";
for (=1; j<o.y-1; J++) |
for{i=0; i<o.x; i++)

|

if(i==0 || i==o.x-1) stream << "*";

else stream << " ;

stream << "\n";

for(i=0; i<o.x; 1i++)
stream << "*";

stream << "\n";

return stream;

int main()

box a(l4, 6), b(30, 7), c(40, 5);

532 (++: The Complete Reference

cout << "Here are some boxes:\n";
cout << a << b << ¢;

return 0O;

The program displays the following:

Here are some boxes:

Fokok kok ok ok ok ok ok ok k ok ok

* *
* *
* *
* *

Kok ok ok ok ok ok ok ok ok ok Kk ok ok

Kok K ok kK

* *
* *
* *
* *
* *

KAk Kk Kk kdkhkhkkkhkxkhkhhkkdokkhhkkxxki

Khdkhkkhdkkk kAkhhhkhkhhkkhkrkkrkkhkrhkhkkdkhhk kwkkr kK

* *
* *
* *

KAhkkikhkrhhkhhdhhhhkdrhkhkrhhkhhkdkhkhkxd krxkkkkhkx %%k **

Creating Your Own Extractors

Extractors are the complement of inserters. The general form of an extractor function is

istream &operator>>(istream &stream, class_type &obj)

{
/ / body of extractor
return stream;

J

Extractors return a reference to a stream of type istream, which is an input stream.
The first parameter must also be a reference to a stream of type istream. Notice that

Chapter 20: The C++ 1/0 System Basics 533

the second parameter must be a reference to an object of the class for which the
extractor is overloaded. This is so the object can be modified by the input (extraction)
operation.

Continuing with the phonebook class, here is one way to write an extraction
function:

istream &overator>>(istream &stream, phonebook &o)
{

cout << "Enter name: ";
stream >> o.name;

cout << "Enter area code: “;
stream >> o.areacode;
cout << "Enter prefix: ";
stream >> o.prefix;

cout << "Enter number: ";
stream >> o.num;

cout << "\n";

return stream;

Notice that although this is an input function, it performs output by prompting the user.
The point is that although the main purpose of an extractor is input, it can perform any
operations necessary to achieve that end. However, as with inserters, it is best to keep
the actions performed by an extractor directly related to input. If you don't, you run the
risk of losing much in terms of structure and clarity.

Here is a program that illustrates the phonebook extractor:

#include <iostream>
#include <cstring>
using namespace std;

class phonebook {
char name([80];
int areacode;
int prefix;
int num;
public:
phonebook () { };
phonebook (char *n, int a, int p, int nm)
{
strcpy (name, nj;
areacode = a;
prefix = p;

C++: The Complete Reference

num = nm;
}

friend ostream &operator<<(ostream &stream, phonebook 0);
friend istream &operator>>(istream &stream, phonebook &o);

}i

// Display name and phone number.
cstream &operator<<(ostream &stream, phoriebook o)
{

stream << o.name << " ";

stream << " (" << ¢.areaccde << "} ";

stream << o.prefix << "-" << o.num << "\n";

return stream; ,// must return stream

// Input name and telephone number.
istream &operator>>(istream &stream, phonebook &o)
{

cout << "Enter name: ";

stream >> o.name;

cout << "Enter area code: ";

stream >> o.areacocde;

cout << "Enter prefix: ";

stream >> o.prefix;

cout << "Enter number: ;

stream >> oO.num;

cout << "\n";

return stream;
int main{)

{

vhonebook a;

cout << a;

return 0;

]

Chapter 20: The C++ 1/0 System Basics

Actually, the extractor for phonebook is less than perfect because the cout statements
are needed only if the input stream is connected to an interactive device such as the console
{that is, when the input stream is cinj. If the extractor is used on a stream connected to
a clisk file, for example, then the cout statements would not be applicable. For fun, vou
might want to try suppressing the cout statements except when the input stream refers
to cin. For example, you might use if statements such as the one shown here.

if(stream == cin) cocut << "HEnter name: ";

Now, the prompt will take place only when the output device is most likely the screen.

Creating Your Own Manipulator Functions

In addition to overloading the insertion and extraction operators, you can further
customize C++'s 1/O system by creating vour own manipulator functions. Custom
manipulators are important for two main reasons. First, you can consolidate a sequence
of several separate [/O operations into one manipulator. For example, it is not uncommon
to have situations in which the same sequernce of 1/O operations occurs frequently within
a program. In these cases YOu can use a custom manipulamr to perform these actions,
thus simplitying your source code and preventing accidental errors. A custom manipulator
can also be important when you need to perform 1/0 operations on a nonstandard device.
For example, you might use a manipulator to send control codes to a special type of
printer or to an optical recognition system.

Custom manipulators are a feature of C++ that supports OOP, but also can benefit
programs that aren’'t object oriented. As you will see, custom manipulators can help
make any 1/O-intensive program clearer and more efficient.

As you know, there are two basic types of manipulators: those that operate on
input streams and those that operate on output streams. In addition to these two broad
categories, there is a secondary division: those manipulators that take an argument
and those that don't. Frankly, the procedures necessary to create a parameterized
manipulator vary widely from compiler to compiler, and even between two different
versions of the same compiler. For this reason, you must consuit the documentation
to your compiler for instructions on creating parameterized manipulators. However,
the creation of parameterless manipulators is straightforward and the same for all
compilers. It is described here.

All parameterless manipulator output functions have this skeleton:

ostream &ninip-ianie(ostream &streaii)

!
i

// your code liere
return strean;

535

C++: The Complete Reference

Here, manip-name is the name of the manipulator. Notice that a reference to a stream of
type ostream is returned. This is necessary if a manipulator is used as part of a larger
1/0 expression. It is important to note that even though the manipulator has as its
single argument a reference to the stream upon which it is operating, no argument
is used when the manipulator is inserted in an output operation.

As a simple first example, the following program creates a manipulator called
sethex(), which turns on the showbase flag and sets output to hexadecimal.

#include <iostream>
#include <iomanip>

using namespace std;

// A simple output manipulator.
ostream &sethex(ostream &stream)

{
stream.setf (ios::showbase);
stream.setf (ios::hex, ios::basefield):

return stream;

int main()

{

cout << 256 << " " << sethex << 256;

return 0;

This program displays 256 0x100. As you can see, sethex is used as part of an 1/0
expression in the same way as any of the built-in manipulators.

Custom manipulators need not be complex to be useful. For example, the simple
manipulators la() and ra() display a left and right arrow for emphasis, as shown here:

#include <iostream>
#include <iomanip>
using namespace std;

// Right Arrow
ostream &ra(ostream &stream)
{
stream << "-—-—-—=-=- > v
return stream;

Chapter 20: The C++ 1/0 System Basics 537

// Left Arrow
ostream &la(ostream &stream)
{

stream << " <---—-—-—— s

return stream;

int main{()
‘

cout << "High balance " << ra << 1233.23 << "\n";
cout << "Over draft " << ra << 567.66 << la;

return 0;

This program displays:

High balance ------- > 1233.23
Over draft ------- > 567.66 <————--—

If used frequently, these simple manipulators save you from some tedious typing.
Using an output manipulator is particularly useful for sending special codes to
a device. For example, a printer may be able to accept various codes that change the
type size or font, or that position the print head in a special location. If these adjustments
are going to be made frequently, they are perfect candidates for a manipulator.
All parameterless input manipulator functions have this skeleton:

istream &manip-name(istream &stream)
/[your code here
return stream;

}

An input manipulator receives a reference to the stream for which it was invoked. This
stream must be returned by the manipulator.

The following program creates the getpass() input manipulator, which rings the
bell and then prompts for a password:

#include <iostream>
#include <cstring>

538 C++: The Complete Reference

usling namespace std;

// A simple input manipulator.
istream &getpass{istream &stream)
{

cout << '\a'; // sound bell

cout << "Enter password: ";

return stream;

{
char pw[80];
do {
cir - getpass >» uw;
} whi’s strcomp(pw, “"password")!;
cout <« “i..gon cocmplete\n”;

return 0;

Remember that it is crucial that vour manipulator return stream. If it does not, your
manipulator cannot be used in a series of input or output operations.

